
Designer

Designer ii

COLLABORATORS

TITLE :

Designer

ACTION NAME DATE SIGNATURE

WRITTEN BY August 2, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Designer iii

Contents

1 Designer 1

1.1 Designer Guide Contents . 1

1.2 CopyRight . 1

1.3 Introduction . 2

1.4 Upgrading older versions . 2

1.5 Preferences . 3

1.6 Generate . 3

1.7 Main Window . 3

1.8 File Operations . 4

1.9 Main Code . 5

1.10 Using Disk Fonts . 7

1.11 Open Libraries . 7

1.12 Edit Window . 8

1.13 Button Gadgets . 9

1.14 String Gadgets . 10

1.15 Integer Gadgets . 11

1.16 CheckBox Gadgets . 12

1.17 MX Gadgets . 12

1.18 Cycle Gadgets . 13

1.19 Slider Gadgets . 14

1.20 Scroller Gadgets . 15

1.21 Listview Gadgets . 16

1.22 Palette Gadgets . 16

1.23 Text Display Gadgets . 17

1.24 Number display Gadgets . 18

1.25 Gadget Information . 18

1.26 Boolean Gadgets . 19

1.27 Window code options . 20

1.28 Window Sizes . 21

1.29 Window IDCMP . 21

Designer iv

1.30 Magnify Window . 22

1.31 Tags for window . 22

1.32 Text editing window . 23

1.33 Images in window . 24

1.34 Creating Bevel Boxes . 24

1.35 Editing Menus . 24

1.36 Editing Images . 25

1.37 Locale Support . 27

1.38 Credits . 27

Designer 1 / 27

Chapter 1

Designer

1.1 Designer Guide Contents

The Designer

Copyright

Introduction

Upgrading

Main Window

Preferences

Main Code Options

File Operations

Libraries

Generating

Editing Windows

Editing Menus

Editing Images

Locale Support

Credits
(C) Ian OConnor 1994

1.2 CopyRight

The Designer (C) Ian OConnor 1994, All rights reserved.

Designer 2 / 27

The Designer is shareware, you may distribute copies of the demo
to anybody, but the full version may not be distributed, although you can,
of course, back it up if you wish as long as the backups remain at all
times in your posession. This software is provided "AS IS", without
warranty of any kind, either expressed or implied. The author is not
responsible for any damage or loss of data due to use of this program,
these are solely the users concern.

Introduction

1.3 Introduction

The Designer

(C) Ian OConnor 1994

Release : 1.42

This program was written to make designing Intuition interfaces for your
programs easier and quicker. It will produce code to open and close

Windows
, make
Menus
, make
Images
and much more. It also has the

ability to produce IDCMP handling routines for your applications along
with other useful routines and if you wish will create a full program
that will compile and run for the simpler windows.
It produces a file, that you can compile and use in your program, that
contains all the routines you need. It is recommended that you do not
edit this file because you will then be able to update it in the future
for new features etc. needing only to recompile your source for a new look
or extra options.
The actual production of the source is handled by a program called a
producer, stored in the same directory as The Designer. You select which
language you want by selecting the relevant producer in code options.
Help is provided on most functions, telling you what they do and how
they are used.
Any bug fixes or updates will be released into PD in a form which will
enable registered users to update their files. I will not say how often
these will be released because I cannot know. It depends to a large
extent upon the interest shown in this program.

Ian OConnor

1.4 Upgrading older versions

Designer 3 / 27

The Demo version can be used to upgrade registered users programs to
the latest edition.
The extra icon on the bottom of the main window in the demo is used to
create the new files required. You must use the top button in the upgrade
window to select your old Designer file, it will the enable you to install
the new Designer file to where you wish in full working order.
The other buttons allow the installation of other files as well, these
are just copy commands. copy must be available for any of the icons to
work, including the make new Designer File option.
Using this method of upgrading any registered user should be able to
get the latest version without too much difficulty.

1.5 Preferences

This is where you can set up the options for the editer. Save ←↩
writes

them to disk while Use means that any changes will be lost when the
computer reset.
The default producer is the one which is assumed on startup of the
designer.

Main Window

Code Options

1.6 Generate

All code is generated from saved designer files by the producers ←↩
, at

the moment their are two of these, Pascal and C. The generate button
saves the current data (which must have already been saved) and then
runs the selected producer on this file.
The producers can also be run from workbench or CLI with their methods
of passing parameters, multiple files are supported.

Fonts

Code Options

Preferences

1.7 Main Window

This is the window presented on running the program, the ←↩
creation of

Designer 4 / 27

windows, menus and importing of images is all handled here, as well as
code production and file operations. The gadgets are as follows.

About
: A little message.

Prefs
: Here you can set up your own prefs for The Designer. Only

options about the editor are here.

Code
: Allows you to set code preferences changing what is

produced,
library
options are also here.

Open, Save :
File operations
.

Generate
: Saves the .des file and calls the Producer specified in

the code options.
Help : Well, here we are...

New, Delete and Edit allow you to play with the
Windows
,
Menus
and

Images
the Designer produces.

Keyboard shortcuts are underlined on the gadgets except for W, M and I
which change the list displayed.

1.8 File Operations

Load and Save are simple and obvious, but as from V1.3 a merge ←↩
option

is available from the main window menu.
This loads in the windows, menus and images from another designer file
without deleting the current data loaded. However it does not overwrite
the designers code settings or the libraries that are opened, these
remain as before.

All designer files are saved with a .des extension. They must be
saved before they can be

produced
.

It is now possible to import .GUI files from GadToolsBox, this
requires the GTX and nofrag libraries to be present. The result
of importing a file is to get windows and menus, the assorted code
options are left alone so should be set by you.

Designer 5 / 27

Thanks to Richard Waspe for the pascal GTX unit.

1.9 Main Code

Here Several options acting on the whole product are set. If ←↩
comment

code is checked then the code produced is commented to its maximum
extent. This overrides the comment field of window code.
If WaitPointer is checked then a standard Release 2.0 waitpointer is
included, to use it a command like this is needed :
SetPointer(Win, WaitPointer, 16, 16, -6, 0);

[pWaitPointer in pascal]
If IDCMP Handler is checked then the framework of an idcmp handler is
produced for each window and menu designed. These functions should then
be copied into your own code and edited. These are in the produced file
unless you have selected make a main program file, then they are in that,
see below for more info on that.
Makelibs means that

library
opening code will be created.

Make Main Program will create a dummy main called <ProjectName>main.c or
.pas which can be compiled to produce a very simple program that works
immediately.
This will only open the first window in the window list and open the
defined libraries and making images etc. .
A basic message handler will be produced and all the functions to handle
all the windows messages will be put in this main file. It will be similar
to the example forms supplied. Closing the window will quit. It will not
include C WorkBench startup code because I am not sure how to do that on
different compilers (I do not own them), this does not affect pascal of
course.
Extra parameters to the first window are not supported yet, do these
yourself.
This file should only be used as a guideline for writing your main
because so few programs will really be this simple.
You must make sure suitable

libraries
are opened for this program not

to crash.
As of V1.2 you now have the ability to add extra include files to the list
at the beginning of the produced code. This enables you to write programs
like the MultipleDemo with many copies of the same window being open at
the same time. You should examine the code for the MultipleDemo carefully
if you wish to do this. Most important is that you set the Window Label
correctly and define the WindowNode structure properly. You do not have
to use a node at all, of course, but the structure must contain all the
correct fields to open the window. Then set the window to receive the
suitable extra parameters and it should all work. You must also disable
the definition of the window variables in the file, otherwise you will
get some errors (bottom left of window code window, at this time).

The Code :

Pascal :

Designer 6 / 27

For each window 2 or 3 functions will be created :
Function OpenWindow’WindowLabel’:Boolean;
Procedure CloseWindow’WindowLabel’;
Procedure RendWindow’WindowLabel’; Optional

The first of these may need parameters depending on its code options.
Just check the header in the unit for details.
Their also exist several global variables for each window :

’WindowLabel’ : pWindow;
’WindowLabel’glist : pGadget;
’WindowLabel’VisualInfo : Pointer;
’WindowLabel’Gads : array[] of pgadget; Optional

as well as a few others for the window gadgets.
For each menu one function is produced

Function MakeMenu’MenuLabel’(VisulaInfo : Pointer): Boolean;
the menus should be freed with FreeMenus as normal.
The global ’MenuLabel’ is a pointer to the allocated menu structure.
All images are created as const data and are allocated to chip ram by
the makeimages:boolean fuction, free them on exit with free images,
only free them if thy are succesfully allocated.
Several procedures are included to make life easier :

Procedure Settagitem(pt : ptagitem ; tag : long ; data : long);
procedure printstring(pwin:pwindow;x,y:word;s:string;f,b:byte;

font:ptextattr;dm:byte);
procedure stripintuimessages(mp:pmsgport;win:pwindow);
procedure closewindowsafely(win : pwindow);
function generalgadtoolsgad(kind : long;

x,y,w,h,id : word;
ptxt : pbyte;
font : ptextattr;
flags : long;
visinfo : pointer;
pprevgad : pgadget;
userdata : pointer;
taglist : ptagitem

):pgadget;
function getstringfromgad(pgad:pgadget):string;
function getintegerfromgad(pgad:pgadget):long;
function GadSelected(pgad:pgadget):Boolean;
procedure gt_setsinglegadgetattr(gad:pgadget;win:pwindow;

tag1,tag2:long);

C :

For details of the functions produced read them! The definitions are
in the header file produced and the functions do approximately the
same as the above Pascal ones.

GTB compatability when switched on causes the CProducer to create
extra code, or slightly different code as follows. This was requested
and was not hard to do so here you go :

OpenXwindow instead of OpenWindowX
CloseXwindow as above
XNewGad instead of XNewGadgets
GD_ and GDX_ gadget references produced.

Designer 7 / 27

Alternate Includes creates slightly different C .c and .h files, having
all the #includes in the .h file and having the main include .h not .c
This means you do not have to recompile everything everytime.

Fonts

Generation

Locale

1.10 Using Disk Fonts

If the code option to make diskfonts is set then a function will ←↩
be

produced that opens all the fonts that the program needs, otherwise
the correct fonts may not be used in the produced code when run.

Code Options

Generation

1.11 Open Libraries

If the procedure to open libraries is created then the libraries ←↩
to

open, the earliest version acceptable and whether to halt whole program
if unopenable is set in the choose libraries window.
Whether to produce these functions is set in the

code
window. The

functions created would be

Pascal : Function OpenLibs:boolean;
Procedure CloseLibs;

C : int OpenLibs(void);
void CloseLibs(void);

Open Libs will return False in Pascal or non-zero in C if it is unable to
open a library and told to fail if that library unopened. If the procedure
fails then all libraries will be closed, if it does not abort on fail you
should check the library you want is open before use.
Default values are set that open those libraries required by the code
produced by the Designer, even if you open libraries yourself you must
open these libraries :

Intuition V37
Graphics V37
GadTools V37

Designer 8 / 27

DiskFont V36

Your program should have a bit like this if you use these functions:

Pascal : If OpenLibs then
Begin

{ rest of program }

CloseLibs;
End
else
writeln(’Cannot open all libraries.’);

C : If (OpenLibs()==0)
{
/*
Continue program

*/
CloseLibs();
}

else
{
/*
OpenLibs Failed

*/
}

Code Options

1.12 Edit Window

This is the main part of the program. Here you can design the ←↩
windows

that will be produced for you.

The following operate on the selected or all selected Gadgets in the
window at that time. To select a gadget you should just activate it by
clicking on it in a way to send a message. Multiple selects are done
by holding down a Shift key when selecting. Clicking on a blank bit of
the window while holding down shift will create a box which will select
all gadgets inside the box, if it is not cancelled with the right button.

Gadgets
:

Size : Allows you to change size of selected Gadget.
Clone : Allows you to copy and place current selected gadgets.
Delete : Deletes selected gadgets.
Move : Moves all selected gadgets.
Align : Allows you to align all selected Gadgets to a given

line and side.
Spread : Space all selected gadgets out in given direction with

Designer 9 / 27

given space in between them.

Graphics :

Bevel
: Create and edit bevel boxes on the window.

Text
: Create and edit text on the window.

Image
: Place imported images on the window.

Options :
Screen : Edit edit screen mode.

Tags
: Edit window tags.

Code
: Edit window created code options.

Sizes
: Edit window sizes.

IDCMP
: Edit IDCMP message types received by program.

Help : This help text.

Other :

Magnify
: Show window in more detail.

Code Options

Fonts

Imported Images

1.13 Button Gadgets

These are simple hit select gadgets with a raised bevel border.

Options :
Text Text to place in/near gadget, not clipped.
LabelID Constant equal to the gadgets id produced in source.
Place Text location.
Disabled Initial state of gadget
UnderScore Precede a letter in Text with _ so it is underlined.

Tags :
GA_Disabled(BOOL)

Designer 10 / 27

Shades out gadget if true, preventing activation.

Messages :
IDCMP_GADGETUP

IntuiMessage.IAddress contains pointer to gadget structure.

Comments :
If the gadget brings up a requester then Text should end in "...".

Gadgets

1.14 String Gadgets

These are Text entry gadgets with a raised ridge border.

Options :
Text Text to place near gadget, not clipped.
LabelID Constant equal to the gadgets id produced in source.
Place Text location.
Disabled Initial state of gadget
UnderScore Precede a letter in Text with _ so it is underlined.
ReplaceMode Gadget in replacemode instead of autoinsert mode.
ExitHelp If help key pressed while gadget activated then message

sent, see below.
TabCycle Cycle through string/integer gadgets when tab pressed.
Immediate Receive message when gadget selected.
Justification Where to put the string in the gadget.
MaxChars Maximum length of string.
EditHook Here you are on your own. I have never experimented

with this, nor do I intend too, what you type in
is given directly as a tag field so make sure it is
legal code. You must include the file that defines
the hook function in the produced code by using the
include option in the main code window.

Tags :
GA_Disabled(BOOL)

Shades out gadget if true, preventing activation.
GTST_String(STRPTR)

Places new string in gadget, clears if set to NULL.

Messages :
IDCMP_GADGETUP

Received when user presses Enter, Return, Help, Tab or Shift Tab
if Tab then intuimessage.code = 0x09
if Help then intuimessage.code = 0x5F, this case should be

handled carefully.
To read string

In pascal use string:=GetStringFromGad(pgadget);
In C ((struct StringInfo *)gad->SpecialInfo)->Buffer

IntuiMessage.IAddress contains pointer to gadget structure.

Comments :

Designer 11 / 27

Immediate will work in all versions from 37 and up, the special
case of V37 is handled properly.

Gadgets

1.15 Integer Gadgets

These are Number entry gadgets with a raised ridge border.

Options :
Text Text to place near gadget, not clipped.
LabelID Constant equal to the gadgets id produced in source.
Place Text location.
Disabled Initial state of gadget
UnderScore Precede a letter in Text with _ so it is underlined.
ReplaceMode Gadget in replacemode instead of autoinsert mode.
ExitHelp If help key pressed while gadget activated then message

sent, see below.
TabCycle Cycle through string/integer gadgets when tab pressed.
Immediate Receive message when gadget selected.
Justification Where to put the number in the gadget.
MaxChars Maximum length of number.
EditHook Here you are on your own. I have never experimented

with this, nor do I intend too, what you type in
is given directly as a tag field so make sure it is
legal code. You must include the file that defines
the hook function in the produced code by using the
include option in the main code window.

Tags :
GA_Disabled(BOOL)

Shades out gadget if true, preventing activation.
GTIN_Number(LONG)

Places new number in gadget.

Messages :
IDCMP_GADGETUP

Received when user presses Enter, Return, Help, Tab or Shift Tab
if Tab then intuimessage.code = 0x09
if Help then intuimessage.code = 0x5F, this case should be

handled carefully.
To read string

In pascal use long:=GetIntegerFromGad(pgadget);
In C ((struct StringInfo *)gad->SpecialInfo)->LongInt

IntuiMessage.IAddress contains pointer to gadget structure.

Comments :
Immediate will work in all versions from 37 and up, then special
case of V37 is handled properly.

Gadgets

Designer 12 / 27

1.16 CheckBox Gadgets

These are toggle gadgets with a raised bevel border.

Options :
Text Text to place near gadget.
LabelID Constant equal to the gadgets id produced in source.
Place Text location.
Disabled Initial state of gadget
UnderScore Precede a letter in Text with _ so it is underlined.
Checked Initial state of gadget.
Scale (V39) Will allow sizing of gadget, all versions will let you

change this but V39+ needed to work.

Tags :
GA_Disabled(BOOL)

Shades out gadget if true, preventing activation.
GTCB_Checked(BOOL)

Set gadget toggle status.

Messages :
IDCMP_GADGETUP

IntuiMessage.IAddress contains pointer to gadget structure.
Track the state of this gadget with GFLG_SELECTED bit in
gadget.Flags field.
In pascal use boolean:=GadSelected(pgadget)

Comments :
The gadget structure is not synchronized with the messages, you
must not rely on the state toggling each time a message is received.

Gadgets

1.17 MX Gadgets

These are mutually exclusive gadgets consisting of a series of ←↩
buttons,

only ooe of which can be active at a time.

Options :
Text Text to place near gadget (V39+ only).
Place Text location (V39 only).
LabelID Constant equal to the gadgets id produced in source.
Place Text location for each button.
Active Initial active button.
Spacing Gap between buttons vertically, added to font height.
UnderScore Precede a letter in Text with _ so it is underlined.
Scale (V39) Will allow sizing of gadget, all versions will let you

Designer 13 / 27

change this but V39+ needed to work.

Tags :
GTMX_Active(LONG)

Position to activate.

Messages :
IDCMP_GADGETDOWN

IntuiMessage.IAddress contains pointer to gadget structure.
intuimessage.code contains new active option.

Comments :
Remember GADGETDOWN not GADGETUP.

Gadgets

1.18 Cycle Gadgets

These are mutually exclusive gadgets consisting of a series of ←↩
options,

only ooe of which can be active at a time. To select the next click on
the button.

Options :
Text Text to place near gadget.
LabelID Constant equal to the gadgets id produced in source.
Place Text location.
Active Initial active option.
UnderScore Precede a letter in Text with _ so it is underlined.
Disabled Initial state of gadget

Tags :
GTCY_Labels(STRPTR*) (set V37+)

New null-terminated array of pointers to null-terminated
strings to be used in gadgte.

GTCY_Active(LONG)
Position to activate.

GA_Disabled(BOOL)
Shades out gadget if true, preventing activation.

Messages :
IDCMP_GADGETUP

IntuiMessage.IAddress contains pointer to gadget structure.
intuimessage.code contains new active option.

Comments :
If you implement a key for a cycle gadget remember that shift key
means cycle through backwards.

Gadgets

Designer 14 / 27

1.19 Slider Gadgets

These are proportional gadgets that allow you to select a number ←↩
in

a range.

Options :
Text Text to place near gadget.
LabelID Constant equal to the gadgets id produced in source.
Place Text location.
Min Level Lowest point possible.
Max Level Highest point possible.
Level Initial level.
Freedom Whether to move horizontally or vertically.
Immediate Whether to receive a message on gadget activation.
Relverify Whether to receive a message when gadget released.
Disabled Initial state of gadget.
Display Print level by gadget.
UnderScore Precede a letter in Text with _ so it is underlined.
Level Place Where to print level if printed by gadget.
Level Format C String format for level printed.
Max Level Len Maximum length of string printed.
DispFunc Here, you are on your own. I have never experimented

with this, nor do I intend too, what you type in
is given directly as a tag field so make sure it is
legal code. You must include the file that defines
the function in the produced code by using the
include option in the main code window.
it should be something like this

(LONG(*function)(struct Gadget *,WORD))

Tags :
GTSL_Min(WORD)

Minimum level.
GTSL_Max(WORD)

Maximum level.
GTSL_Level(WORD)

Change current level.
GA_Disabled(BOOL)

Shades out gadget if true, preventing activation.

Messages :
IDCMP_GADGETUP

User Finished adjusting slider.
IntuiMessage.IAddress contains pointer to gadget structure.
intuimessage.code contains new level.

IDCMP_GADGETDOWN
User begins to adjust level.

IDCMP_MOUSEMOVE
If level changes then intuimessage.code contains new level.

Comments :
If you are working with negative levels then make sure you
typecast into words properly as code field of messages is UWORD.

Designer 15 / 27

Gadgets

1.20 Scroller Gadgets

These are proportional gadgets that allow you to select a region ←↩
in

a range.

Options :
Text Text to place near gadget.
LabelID Constant equal to the gadgets id produced in source.
Place Text location.
Top Highest point possible.
Total size of region.
Visible Amount of range visible.
Immediate Whether to receive a message on gadget activation.
Relverify Whether to receive a message when gadget released.
Disabled Initial state of gadget.
Arrows Include Arrows on end of bar.
UnderScore Precede a letter in Text with _ so it is underlined.
Freedom Whether to move horizontally or vertically.
Arrows Size of arrows in screen pixels.

Tags :
GTSC_Top(WORD)

Maximum level.
GTSC_Total(WORD)

Size of region.
GTSC_Visible(WORD)

Amount in selected part of region.
GA_Disabled(BOOL)

Shades out gadget if true, preventing activation.

Messages :
IDCMP_GADGETUP

User Finished adjusting slider.
IntuiMessage.IAddress contains pointer to gadget structure.
intuimessage.code contains new level.

IDCMP_GADGETDOWN
User begins to adjust level.

IDCMP_MOUSEMOVE
If level changes then intuimessage.code contains new level.

Comments :
If you are working with negative levels then make sure you
typecast into words properly as code field of messages is UWORD.

Gadgets

Designer 16 / 27

1.21 Listview Gadgets

These gadgets provide a way of displaying a list.

Options :
Text Text to place near gadget.
LabelID Constant equal to the gadgets id produced in source.
Place Text location.
Active Initial active option.
Top Initial top of list position.
Spacing Space between each item.
Scrollwidth Width of scrollbar.
UnderScore Precede a letter in Text with _ so it is underlined.
ReadOnly Make Gadget non selectable.
CreateList Make List of items as seen on screen.
Display Display Selected item.
Join,Split Connect/Disconnect a string gadget to the listview,

this enables easy editing of the items.
CallBack (V39) Here you are on your own. I have never

experimented with this, nor do I intend too, what you
type in is given directly as a tag field so make sure
it is legal code. You must include the file that
defines the function in the produced code by using
the include option in the main code window.

Tags :
GTLV_Labels(struct List*)

List to put in listview.
GTLV_Top(UWORD)

Topmost displayed item.
GTLV_Selected(UWORD)

Set selected item.
GTLV_MakeVisible=GT_TagBase+78(LONG) (V39)

Make item visible.
GA_Disabled(BOOL) (V39+)

Shades out gadget if true, preventing activation.

Messages :
IDCMP_GADGETUP

IntuiMessage.IAddress contains pointer to gadget structure.
intuimessage.code contains new selected item.

Comments :
If you implement a key for a cycle gadget remember that shift key
means cycle through backwards.

Gadgets

1.22 Palette Gadgets

These gadgets provide a way of selecting colours.

Designer 17 / 27

Options :
Text Text to place near gadget.
LabelID Constant equal to the gadgets id produced in source.
Place Text location.
Depth Depth of palette requester, 0 for screen (Designer

feature, not gadtools).
it will also mean a variable <WinLabel>Depth will
contain this depth (not the number of colours).

Color Initial Colour selected.
Color Offset Start colour from screen.
Disabled Initial state of gadget.
UnderScore Precede a letter in Text with _ so it is underlined.
Indicator Left Place indicator to left.
Indicator Top Place indicator to top, use either of these for

V39 indicator.
Indicator size Size of indicator, set 20 if program only V39, so

will work on V37.

Tags :
GTPA_Color(WORD)

Set selected colour.
GA_Disabled(BOOL) (V39+)

Shades out gadget if true, preventing activation.

Messages :
IDCMP_GADGETUP

IntuiMessage.IAddress contains pointer to gadget structure.
intuimessage.code contains new selected colour.

Comments :
If you implement a key for a palette gadget remember that shift key
means cycle through backwards.

Gadgets

1.23 Text Display Gadgets

These gadgets just display text, they send no messages.

Options :
Text Text to place near gadget.
LabelID Constant equal to the gadgets id produced in source.
Place Text location.
Bevel Draw a bevel box around gadget.
CopyText Copy string passed so can delete it, only applies

to first text.
Display Text First text to display.
V39 Set true to use following.
Frontpen Text colour.
Backpen Text background colour.
Justification Where to put text.
Clip Whether to clip at borders.

Designer 18 / 27

Tags :
GTTX_Text(STRPTR)

Put new text in window.

Comments :
Fiddle around with clip and justification in V39 to get
different results, I think its safe to do.

Gadgets

1.24 Number display Gadgets

These gadgets just display numbers, they send no messages.

Options :
Text Text to place near gadget.
LabelID Constant equal to the gadgets id produced in source.
Place Text location.
Bevel Draw a bevel box around gadget.
Number First number to display.
V39 Set true to use following.
Frontpen Text colour.
Backpen Text background colour.
Justification Where to put text.
Clip Whether to clip at borders.
Number Format C String controlling number format, empty gad for none.
Max Num Len Supposed to limit string length, not sure if it works.

Tags :
GTNM_Number(LONG)

Put new number in gadget.

Comments :
Fiddle around with clip and justification in V39 to get
different results, I think its safe to do.

Gadgets

1.25 Gadget Information

Note :
If you intend to use the V39 tags that some gadgets have then you
should test the program in V37, if applicable, to make sure you do not
get different results.
For example if you scale the checkboxes to a different size then they
will look rather different under different OS2 and OS3. The same with
MX, Text and Number kinds is true, as well as some small changes to

Designer 19 / 27

others.

All modifiable tags are detailed in the gadget information sections.
The procedure GT_SetSingleGagdetAttr is supplied in any produced

pascal source so that you can easily change tag values with only one
call.

Gadgets :

Button

String

Integer

CheckBox

MX

Cycle

Slider

Scroller

Listview

Palette

Text

Number

Boolean

Edit Window

1.26 Boolean Gadgets

These are constructed on top of the GadTools Generic class, ←↩
boolean

gadgets are those used in buttons, toggle switches, mutual excludes
and so on. The inclusion of this type is meant to allow the use of
some gadgets with definable imagery. You can choose the placing and
type of text with much more precision, select the activation methods,
the highlighting method and images to use in the different state and
the initial state. Experimentation will show what can be done.
OnGadget and OffGadget should be used to enable/disable and the
messages received will be IDCMP_GADGETUP and IDCMP_GADGETDOWN if
you select IMMEDIATE and RELVERIFY respectively. The toggle gadgets in
the Tools window are of this type and GetFile gadgets can be made
using this type.
You should still use

images

Designer 20 / 27

that look like the other types. The
style of gadgets should be kept. To make the gadgets work properly
you should set their size to be the same as the images used.

Edit Window

1.27 Window code options

These options change the kind of procedures produced to open and ←↩
close

the
edit window
.

You should really check if the window is open unless it is only called
once, then this would be wasted code.
Opening only if can create gadgets is also a good idea.
Having more than one gadget font can make windows look over-complicated
and creates larger programs, but is sometimes required.
Return boolean can allow a program to fail if the window is unopenable,
this only applys to pascal because you can ignor the return in C.
A custom message port can be supplied and the window will be closed
safely.
Calculating border sizes allows for different height of title bars, not
doing so fixes them at the edited size.
Producing a pgadget array allows referencing the gadgets by your code
and is usually necessary.
Attaching a menu created is easily done and options allow definition of
the code produced.
Commenting code allows you to read over the unit and see what is
happening, commenting is done if the Main Code options Comment is set.
WorkBench AppWindows allow icons to be dragged onto your window, if it
is on the Workbench screen. It requires a seperate message port which is
supplied as a parameter to the openwindow procedure, also supplied to
the openwindow function is a long for the appwin id.
The gadget list window, which can be opened from here, or automatically
via preferences, allows you to change the order of the gadgets. This
changes their gadget IDs the first gadget ID is also set here, usually 0.
This window can also be used to edit gadgets which cannot be activated,
ie if you put them behind another accidently or an error occurs and they
cannot be created. High acts in the same way as clicking ont the window
does, ie Shift High does not unhighlight other gadgets.
Setting scale using screen font makes all gadgets and bevel boxes change
size so that, in theory, the window looks the same and any larger screen
font can be accomodated. It is also possible to set Texts on the screen
to use the screen font so everything looks the same. Everything is laid
out properly I hope and the window size is changed. To make sure this
options works OK for your window you should test it in the Designer with
several different fonts and sizes. Proportional fonts seem to work OK
most of the time but their are probably exceptions.
The params and " do not define some pointers " should be used in the
same way as the MultipleDemo shows, do not experiment with these values
as they will stop your code working. If these options are used then the
same designer file will no longer produce both C and Pascal source

Designer 21 / 27

that works, as all the demos other than MultipleDemo do. I would suggest
you base all your multiple window code around the shell of the
MultipleDemo unless you really know what you are doing, and what the
Producers make. The structure of the demo is not dissimilar to that
of the Designer itself, with many different types of nodes and only
one message port, this way most things can be done at the same time,
eg edit a window and a menu together, although it can be quite hard
to keep everything up to date with everything else. You delete an Image
and the Designer has to check every menu, item, subitem, window ,boolean
gadget and window image, then it must check which edit windows need
updating or closing, a long job.
SuperBitMap support allows you to create a bitmap and pass it to the
openwindow function or allow the produced code to create its own bitmap.
You should always set GimmeZeorZero on a superbitmap window. The bitmap
created by the produced code will be the same size as the windows maximum
size, so you should reduce this to the minimum for memory reasons. If
you do not you will always end up with a 1200 by 1200 bitmap which needs
loads of chip ram.
Localisation of gadget texts, window titles, screen titles and window
texts are now supported, see

locale
for more info.

1.28 Window Sizes

Allows you to directly edit the
window
size, zoom size and the maximum

and minimum sizes. All changes will be made to the window when OK or
Update are selected but if you move or size the window before updating
then your input will be overwritten with the new size. These sizes are
the actual ones on screen, including the borders, if border sizes are
calculated then the window size will be modified suitably. If InnerWidth
and InnerHeight are not set to 0 they will be used instead of width and
height. It would probably be sensible to use InnerW and InnerH all the
time, this along with calculating border sizes will produce windows as
good as a gimmezz, as far as sizeing goes. When InnerWidth and
InnerHeight are in use the width and height values are not editable.
Window sizes can be scaled for different screen fonts - see window code

1.29 Window IDCMP

Choose which IDCMP messages will be sent to the
edit window
by Intuition.

See RKM for full documentation. Suitable IDCMP will be added for gadgets
as used by the window anyway.

IDCMP Flags :
MOUSEBUTTONS : Supply info about mouse button presses.

Designer 22 / 27

MOUSEMOVE : Tell when mouse moves.
DELTAMOVE : As above with change of position.
GADGETDOWN : Gadget message.
GADGETUP : Gadget message.
CLOSEWINDOW : CloseWindow gadget pressed.
MENUPICK : Menu Item Selected.
MENUVERIFY : Is it OK to draw a menu ?
MENUHELP : Help key pressed on menu item.
REQSET : Requester set on window.
REQCLEAR : Requester removed from window.
NEWSIZE : Window has been resized.
REFRESHWINDOW : Window needs redrawing.
SIZEVERIFY : Can window be resized ?
ACTIVEWINDOW : Window made active.
INACTIVEWINDOW : Window deactivated.
VANILLAKEY : Vanilla key code passed.
RAWKEY : Raw key code passed.
NEWPREFS : 1.3 Prefs changed.
DISKINSERTED : Floppy disk inserted.
DISKREMOVED : Floppy disk removed.
INTUITICKS : Timing message.
IDCMPUPDATE : Boopsi Message.
CHANGEWINDOW : Window Sized or moved.

1.30 Magnify Window

Allows you too see what you are doing in more detail on
a screen around the mouse pointer. A gimmick but can be
useful on a superhires-interlace screen or similar.
Sometimes it overwrites the windows borders when it is
sized, not quite sure how to stop this, although it seems
to be perfectly safe.
Its probably a good idea to keep it quite small, otherwise
it slows everything down rather a lot.
A complemented dot shows where the mouse pointer actually is.

1.31 Tags for window

The tags specified here define a lot of details for your
edit window
. Not

all will be used while editing but they will all be in the
code
generated.

Specific Information

WindowTitle : Title string for window.
ScreenTitle : Title string for screen when window is active.
WindowLabel : Label referred to in source.
CustomScreen : Allows Custom Screen Pointer to be passed to window

Designer 23 / 27

opening routine.
PubScreen : Similar to above but Public screen.
PubScreenName : Pass a pointer to a null terminated string giving

name of public screen to open on.
PubScrFallBack : Fall back to default screen if cannot find public

requested.
MouseQueue : Mouse message backlog limit.
RptQueue : Repeat key backlog limit.
SizeGadget : Do you want a sizing gadget ?.
SizeBRight : Put Size Gadget in right border.
SizeBBottom : Put Size Gadget in bottom border.
DragBar : Allows window title bar dragging.
DepthGadget : Allows user to change window depth.
CloseGadget : Window has a close gadget.
ReportMouse : Send mouse movements to window.
NoCareRefresh : Do not receive refreshwindow messages, bad idea with

gadtools.
Borderless : Make window borderless, usually just backdrop windows

have this.
BackDrop : Window is always at the back, can only have one per

screen.
GimmeZeroZero : 0,0 of window is below title bar and right of left

border.
Activate : Activate window on opening.
RMBTrap : Trap menu events, do not allow menu selections.
SimpleRefresh : No intuition refreshing at all.
Smartrefresh : Intuition handles most refreshing.
Autoadjust : Move/Size window so that it goes on the screen.
MenuHelp : Receive IDCMP_MENHELP when user presses help button

on menus.
Zoom : Supply zoom gadget array of values.
NewLookMenus : In V39 this will make windows use the new standard.

This should be left true. All Designer produced
menus are newlook from Designer V1.3 and if you
set this to false then strange results may be
produced, this effects only V39.

NotifyDepth : IDCMP_CHANGEWINDOW messages with code = WCODE_DEPTH
will be sent when windows depth is changed (V39).

TabletMessages : Receive graphics tablet input (V39).

You can use any of the above V39 tags in your programs to compile with
V37 includes, and run on V37 machines.

For full information see manuals.

1.32 Text editing window

Editing strings to be placed in the
window
, it is all pretty self

explanatory. All fonts are supported and can be easily selected. The
drawmodes are standard as well, just try them if you are not sure what
they do.
The text gets displayed at the bottom of the window, Update puts the texts

Designer 24 / 27

on the edit window, if placed.
All the texts must be placed before they are drawn. Clicking on the edit
window in edit text mode allows you to move the currently selected text.
Setting use screen fonts enables a standard look in a window using scaled
gadgets.

1.33 Images in window

Any image loaded in can be placed on the
edit window
. They are removed

if the image is deleted. A list of those placed is available, an image
can be placed any number of times on a window.
The exact positioning of an image can be changed by changing the numbers
on the image choosing window. The image drawing gadget works in the same
way as the

text
drawing gadget, it moves the currently selected image

about the window.

1.34 Creating Bevel Boxes

These use the GadTools BevelBox procedure to draw 3-D Bevel ←↩
Boxes on

the
edit window
. Normal boxes bring out an area to show it can be

selected, Recessed boxes show the user it cannot be selected and Double
boxes seperate out areas of a window.
Bevel Boxes cannot be selected on screen so you have to edit them using
the options in the edit window. Update redraws the edit window so that
you see any changes you have made to box types.
If a scaled window is selected these will be resized accordingly.
If you use the V39 boxex you will get a normal box on a V37 machine.

1.35 Editing Menus

Menus can be created as stand alone to be used as you wish, or ←↩
they can

be attached to windows designed in the program. The layout of the menus
is all pretty obvious to an amiga user. Titles are the left column, Items
in the centre and SubItems to the right.
The

font
and colour of the text can be changed easily, and graphic items

can be used instead of text, the second listview in each column contains
a list of all imported

Designer 25 / 27

images
.

There is a problem with these if you try to use an image taller than the
screen, the machine crashes, or at least, mine does.
The menu you create can be tested using the Test button, this updates
the menu attached to the menu edit window. This is not necessary if the
Autotest option is set in

prefs
. The option to turn autotesting off

exists because it can slow down menu creation quite a lot.
There must be at least one Title on each menu, the number of Titles,
Items and SubItems is limited only by intuition.
Mutual exclusion is possible for items and subitems. The items/subitems
you wish to exclude from the selected item/subitem should be checked on
the menu. You should ’Test’ the menu before doing this if it is not ’auto
tested’ to make sure it is up to date. Failure to do this might cause
problems reading the menus. I recommend you set the checked bits of
all items to be excluded while excluding them to make the job easier,
turning then off afterwards to get the required menu actions. You must
test the menu for this to take effect, it does not work otherwise. If
it autotests then it is impossible to set up most situations.
If the code option IDCMP Handlers is set in the

code window
then a

procedure will be produced for each menu which is the framework for
processing input for the menu. You should copy these procedures into your
own program and edit them so they carry out the required actions. If you
want MENUHELP then copying this procedure twice will enable response to
those messages also.
As of Designer V1.3 all menus are produced with the NewLookMenus option.
This will only affect programs when running under OS3.0 and up. It will
make the menus look like the standard WB3 menus. The windows need to have
the WA_NewLookMenus tag set to true and that is now the default for the
Designer windows. This has no effect with earlier OSs.

1.36 Editing Images

Any non-Ham IFF image can be imported into the Designer and the ←↩
code

produced will contain an Image structure which can be used as desired by
you. Most of the fields in this image structure are defined by the image
itself but you can chenge the PlanePick and PlaneOnOff fields.
The PlanePick field specifies which bitplanes the image is drawn in.
For each bitplane in the image there must be a corresponding destination
bitplane in PlanePick. The designer will ensure that the PlanePick value
is always legal.
The PlaneOnOff field just selects ehether the planes not written to by
the image are set or cleared. Default is all cleared.
Use the view button to update the display so you can see what the image
looks like.
To move the images into chip ram this is necessary :

Pascal : If MakeImages then
Begin

Designer 26 / 27

{ rest of program }

FreeImages;
End
else
writeln(’Cannot make images.’);

C : It is only necessary to call this function if your compiler
does not support __chip. Set the option in the main

code
window to choose whether __chip is used or these ←↩

functions
are produced.

If (MakeImages()==0)
{
/*
Continue program

*/
FreeImages();
}

else
{
/*
MakeImages Failed

*/
}

Colour maps are created in the produced files and can be used when an
image display window is opened, set whether they are or not in

prefs
.

The maps are only produced if the images imported have a colour map, it
is not required for success. At the moment only 4096 colours are
supported, 24 bit palettes are converted down to 12 bit internally.
LoadRGB4 is used to set these to a viewport. To set a colourmap to a
screen use :

Pascal : LoadRGB4(@pscr^.viewport, pword(colours), numcolours);
C : LoadRGB4(&Scr->ViewPort, (UWORD *)colours, numcolours);

If you wish to edit a window with an imported palette then the only way
to do this is at the moment is to open an image view window on the edit
screen.
The imported images can be used in

windows
,
boolean gadgets
and

menus
in

the designer.
Images can now be replaced, this allows you to change or update an image
without having to specify all the places it is used, you used to have
to load a new image, delete an old one and then go through putting it
where it belongs. Just select this from the menu.
Warning : If you replace an image used in a menu with one too tall for
the screen it crashes my computer, so replacing should be done carefully,

Designer 27 / 27

also see menu help about this.

1.37 Locale Support

It is now possible for you to support Locale in your programs which are
made with The Designer. Menus and Window strings are supported allowing
you to produce code which has every string localized. You can also add
your own strings to those to be put in the .cd file. The producers will
create a .cd file if the option in code options is set, this will then
allow you to create a catalog file with catcomp or similar.
It is necessary for you to have a program like this to create .catalog
files but these are not necessary for the program to run, internal
defaults will be used if either of the catalog or locale.library is
unavailable.
To use the catalogs in your code you must open the catalog and close it
when done. The functions to do this are Open+basename+Catalog(NULL,NULL);
and Close+basename+Catalog();
In Pascal code is produced for the locale.library functions as their is
no unit for these in V1.1, Version 3 includes are necessary for C.
You should create most of your program and make sure it all works
properly before creating any catalog files, as these must be up to date
or problems will occur. You should definately increase the locale
version number each time you recreate the catalogs and translations.
For full instructions on how to process .cd and .ct files see docs
on catcomp or flexcat.
Make sure you do not mix up old and new version of the catalog files.
When you create new Windows and Menus the locale options are set
depending on the preferences option : Localize Everything.

1.38 Credits

I wish to thank the following for work that has helped me write the code
for these programs.

HiSoft, D-House and Christen Fihl
for the HSPascal compiler.

Matt Dillon
for DICE 2.07.56R

Jan van den Baard
for the GTX.library.

Richard Waspe
for the pascal GTX unit.

Jochen Wiedmann
for flexcat V1.0 (Available on Aminet)

C= (The development teams)
for the Amiga.

	Designer
	 Designer Guide Contents
	 CopyRight
	 Introduction
	 Upgrading older versions
	 Preferences
	 Generate
	 Main Window
	 File Operations
	 Main Code
	Using Disk Fonts
	 Open Libraries
	 Edit Window
	 Button Gadgets
	 String Gadgets
	 Integer Gadgets
	 CheckBox Gadgets
	 MX Gadgets
	 Cycle Gadgets
	 Slider Gadgets
	 Scroller Gadgets
	 Listview Gadgets
	 Palette Gadgets
	 Text Display Gadgets
	 Number display Gadgets
	 Gadget Information
	 Boolean Gadgets
	 Window code options
	 Window Sizes
	 Window IDCMP
	 Magnify Window
	 Tags for window
	 Text editing window
	 Images in window
	 Creating Bevel Boxes
	 Editing Menus
	 Editing Images
	 Locale Support
	 Credits

